Abstract
Peyronie's disease (PD) is characterized by the formation of fibrous plaque in tunica albuginea, causing several problems in patients. The etiology of this disease is not fully understood, and there are few effective treatments. To better understand the molecular pathways of PD, we studied miR-29b, a microRNA that could be involved with this illness. MicroRNAs are endogenous molecules that act by inhibiting messenger RNA. MiR-29b regulates 11 of 20 collagen genes and the TGF-β1 gene, which are related to PD progression. We compared miR-29b expression in 11 patients with PD and 14 patients without PD (control group). For the patients with PD, we utilized samples from the fibrous plaque (n = 9), from the tunica albuginea (n = 11), and from the corpus cavernosum (n = 8). For the control group, we utilized samples from the tunica albuginea (n = 14) and from the corpus cavernosum (n = 10). MiR-29b expression was determined by q-PCR. We found a downregulation of miR-29b in the fibrous plaque, tunica albuginea and corpus cavernosum of patients with PD in comparison with the control group (p = 0.0484, p = 0.0025, and p = 0.0016, respectively). Although our study has a small sample, we showed for the first time an evidence that the downregulation of miR-29b is associated with PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.