Abstract

Albeit microRNAs (miRNAs) have become increasingly appreciated for their essential roles in innate immune responses to viral infections; however, it is unknown how host miRNAs regulate influenza A virus (IAV)-induced inflammation. The aim of our study was to investigate the role of miR-146a in IAV replication in vitro and in vivo. In vitro, we found miR-146a was significantly upregulated in A549 cells with IAV infection. Overexpression of miR-146a promoted IAV replication, while downregulation of miR-146a repressed replication. We found that miR-146a diminished type I interferon (IFN) responses by decreasing IFN-β production and IFN-stimulated gene (ISG) expression. Furthermore, we found the IFNs level and IAV replication regulated by miR-146a inhibitor was partially reversed by depletion of interferon receptor (IFNAR) 1 or 2. In addition, we found that miR-146a directly targets tumor necrosis factor receptor association factor 6 (TRAF6), which is involved in the production of type I IFN, and TRAF6 overexpression reversed the replication-promoting effect of miR-146a on IAV. In vivo, inhibition of miR-146a alleviated IAV-induced mice lung injury and promoted survival rates by promoting type I antiviral activities. It is, therefore, concluded that downregulation of miR-146a inhibits IAV replication by enhancing type I IFN response through its target gene TRAF6 in vitro and in vivo, suggesting miR-146a antagomir might be a potential therapeutic target during IAV infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.