Abstract

ABSTRACT Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the brain and spinal cord. Evidences have demonstrated that microRNAs (miRNAs) are involved in the pathological process of MS that may confer a valuable diagnostic biomarker for disease diagnosis, prognosis, and treatment. Hence, we assessed the expression pattern of miR-125a-5p and miR-218-5p in the peripheral blood mononuclear cells (PBMCs) of subjects with relapsing-remitting multiple sclerosis (RRMS). We recruited 50 RRMS patients and 50 age- and sex-matched healthy control subjects. PBMCs were isolated from the peripheral blood samples, RNA content was extracted, cDNA was synthesized, and finally expression level of miRNAs was determined using quantitative real-time PCR. Our data indicate significant downregulation of both miR-125a-5p and miR-218-5p in RRMS patients compared to healthy controls (P< .0001). The levels of both miRNAs were significantly downregulated in an age-dependent manner compared with consistent healthy control groups (30–40 years old P< .0001). Expression level of miR-218-5p was significantly changed in only female patients (Female group P< .0001; Male group P= .12). Receiver operating characteristic (ROC) curve data indicated that the expression levels of both miRNAs were able to discriminate RRMS patients from healthy subjects (P< .05). Moreover, bioinformatic enrichment analysis revealed that the target genes of these miRNAs had cardinal roles in the regulation of key biological pathways involved in the clinical course and pathogenesis of MS. Collectively, our results suggested that miR-125a-5p and miR-218-5p play a role in RRMS pathogenesis and have an age- and sex-dependent expression pattern in these patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.