Abstract

BACKGROUNDCoronary microembolization (CME) is a complicated problem that commonly arises in the context of coronary angioplasty. MicroRNAs play crucial roles in cardiovascular diseases. However, the role and mechanism of miR-181a-5p in CME-induced myocardial injury remains unclear.METHODSWe established CME rat models. Cardiac function was detected by echocardiography. Haematoxylin-basic fuchsin-picric acid staining was used to measure micro-infarction size. Serum samples and cell culture supernatants were evaluated via enzyme-linked immunosorbent assay. Cellular reactive oxygen species were determined by dichloro-dihydro-fluorescein diacetate assay, and the other oxidative stress related parameters were assayed by spectrophotometry. The dual-luciferase reporter (DLR) assay and RNA pulldown were conducted to validate the association between miR-181a-5p and X-linked inhibitor of apoptosis protein (XIAP). The expression of miR-181a-5p and XIAP mRNA were determined by quantitative reverse transcription polymerase chain reaction. Proteins were evaluated via immunoblotting. The viability of the cell was evaluated via cell counting kit-8 assay.RESULTSThe miR-181a-5p level was significantly increased in CME myocardial tissues. Downregulation of miR-181a-5p improved CME-induced cardiac dysfunction and alleviated myocardial oxidative stress and inflammatory injury, whereas miR-181a-5p exhibited the opposite effects. Then, the DLR assay and RNA pulldown results revealed that miR-181a-5p directly targeting on XIAP. The XIAP level was found to be remarkably decreased after CME. XIAP overexpression attenuated CME-induced myocardial oxidative stress and inflammatory injury. Finally, in vitro rescue experiments revealed that knockdown of XIAP could abolish the protective effects of miR-181a-5p knockdown on hypoxia-induced cardiomyocyte oxidative stress and inflammatory injury. CONCLUSIONSDownregulation of miR-181a-5p alleviates CME-induced myocardial damage by suppressing myocardial oxidative stress and inflammation through directly targeting XIAP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call