Abstract

miRNAs are small, signal-strand, non-coding RNAs that function in post-transcriptional regulation. We analysed the in vivo effect of miR-106b (miR-106b-5p) on inflammatory bone loss in CIA mice. CIA mice are developed by injecting DAB/1 mice with bovine type II collagen containing Freund's adjuvant and then the in vivo effect of miR-106b is examined. On day 22, mice were given lentiviral negative control, lentiviral-mediated miR-106b mimics or lentiviral-mediated miR-106b inhibitor via orbital injection on a weekly basis. Morphological changes in the ankle joints were assessed via micro-CT and histopathology and cytokine expression levels were examined via immunohistochemical staining, ELISA or flow cytometric analysis. miR-106b and osteoclastic-related gene expression was evaluated via quantitative real-time PCR. CIA mice were found to have increased miR-106b expression and CIA-associated bone loss and inflammatory infiltration. miR-106b inhibitor treatment markedly decreased arthritis incidence and attenuated bone destruction and histological severity compared with the control group. Moreover, miR-106b inhibitor treatment suppressed RANK ligand (RANKL) expression, increased osteoprotegerin (OPG) expression and reduced the RANKL:OPG ratio in CIA mice. miR-106b inhibition also significantly decreased inflammatory mediator production in joint sections and reduced serum pro-inflammatory cytokine levels when compared with the control group. Additionally, miR-106b inhibition decreased tartrate-resistant acid phosphatase-positive cell numbers and suppressed murine bone marrow macrophage differentiation. These findings indicate that miR-106b inhibition can ameliorate CIA-associated inflammation and bone destruction and thus may serve as a potential therapeutic for human RA treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.