Abstract

MicroRNAs (miRNAs) play critical roles in various biological processes including cell differentiation. Some researchers suggested that the p38 mitogen-activated protein kinases (MAPK) signaling pathway had an effect on regulating the odontoblastic differentiation of human dental pulp stem cells (hDPSCs). This study focuses on the effects of miR-143-5p on hDPSCs by regulating the p38 MAPK signaling pathway. The targeting relationship of MAPK14 and miR-143-5p targets were verified by TargetScan and dual-luciferase reporter gene assay. Through overexpression of miR-143-5p or silencing of miR-143-5p, expressions of miR-143-5p, MAPK14, Ras, MAPK kinase (MKK) 3/6, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), and osteocalcin (OCN) were detected by reverse transcription quantitative polymerase chain reaction. Protein expressions of MAPK14, Ras, and MKK3/6 were determined by western blot analysis. ALP and alizarin red S staining were used to detect mineralization. Initially, MAPK14 was found to be negatively regulated by miR-143-5p. Meanwhile, the upregulated miR-143-5p decreased the p38 MAPK signaling pathway related genes (MAPK14, Ras, and MKK3/6) and odontoblastic differentiation markers (ALP, DSPP, and OCN) expression. On the contrary, the downregulated miR-143-5p increased the p38 MAPK signaling pathway related genes (MAPK14, Ras, and MKK3/6) and odontoblastic differentiation markers (ALP, DSPP, and OCN) expression. Furthermore, ALP activity and mineralized nodules increased after downregulation of miR-143-5p, and after its upregulation, ALP activity and mineralized nodules decreased. Our data suggest that poor expression of miR-143-5p promotes hDPSCs odontoblastic differentiation through the activation of the p38 MAPK signaling pathway by upregulating MAPK14.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.