Abstract
Total knee arthroplasty is a commonly performed safe procedure and typically executed in severe knee arthritis, but it also triggers ischemia-reperfusion injury (IRI). More recently, microRNAs (miRs) have been reported to play a contributory role in IRI through the key signaling pathway. Hence, the current study aimed to investigate the effect and specific mechanism of microRNA-23b (miR-23b), murine double minute 4 (MDM4), and the p53 signaling pathway in IRI rat models. First, the IRI model was established, and the expression pattern of miR-23b, MDM4, and the p53 signaling pathway-related genes was characterized in cartilaginous tissues. Then, miR-23b mimics or inhibitors were applied for the elevation or the depletion of the miR-23b expression and siRNA-MDM4 for the depletion of the MDM4 expression in the articular chondrocytes. By means of immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blot analysis, IRI rats exhibited increased miR-23b expression, activated p53 signaling pathway, and decreased MDM4 expression. MDM4 was verified as a target gene of miR-23b through. Downregulated miR-23b increased the expression of MDM4, AKT, and Bcl-2, but decreased the expression of p53, p21, and Bax. In addition, a series of cell experiments demonstrated that downregulated miR-23b promoted articular chondrocyte proliferation and cell cycle entry, but inhibited articular chondrocyte apoptosis. The absence of the effects of miR-23b was observed after MDM4 knocked down. Our results indicate that silencing miR-23b could act to attenuate IRI and reduce the apoptosis ofarticular chondrocytes through inactivation of the p53 signaling pathway by upregulating MDM4, which provide basic therapeutic considerations for a novel target against IRI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.