Abstract

BackgroundOsteoarthritis (OA) is a common joint disease, which is characterized by degradation of articular cartilage. Evidence indicated that miR-23b-3p was upregulated in cartilage tissues of a patient with OA. However, the mechanism by which miR-23b-3p regulates the occurrence and development of OA remains unclear. Thus, this study aimed to investigate the role of miR-23b-3p in the progression of OA.MethodsIn this study, qRT-PCR was used to measure the expression of miR-23b-3p in OA tissue samples and normal controls, respectively. Western blotting assay was performed to detect the levels of collagen II, aggrecan, Bax and active caspase 3 in CHON-001 cells. In addition, the dual-luciferase reporter system assay was used to detect the interaction between miR-23b-3p and COL11A2 in OA.ResultsThe levels of miR-23b-3p were upregulated, while the expressions of collagen II and aggrecan were decreased in OA tissues and in IL-1β-treated CHON-001 cells. In addition, IL-1β significantly induced apoptosis of CHON-001 cells via increasing the levels of Bax and active caspase 3. However, downregulation of miR-23b-3p markedly inhibited IL-1β-induced apoptosis in CHON-001 cells via increasing the collagen II and aggrecan levels and decreasing Bax and active caspase 3 expressions. Meanwhile, dual-luciferase assay showed that COL11A2 was the direct target of miR-23b-3p in CHON-001 cells. Overexpression of miR-23b-3p markedly decreased the level of COL11A2 in cells. Moreover, downregulation of miR-23b-3p alleviated synovitis/cartilage destruction and reduced Osteoarthritis Research Society International scores and subchondral bone thickness in vivo.ConclusionDownregulation of miR-23b-3p could alleviate the progression of OA through upregulating COL11A2 in vivo and in vitro. Therefore, downregulation of miR-23b-3p might be a potential therapeutic strategy for the treatment of OA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.