Abstract

Glioblastoma is the most common and aggressive primary tumor of the central nervous system with poor outcome. Current gold standard treatment is surgical resection followed by a combination of radio- and chemotherapy. Efficacy of temozolomide (TMZ), the primary chemotherapeutic agent, depends on the DNA methylation status of the O6-methylguanine DNA methyltransferase (MGMT), which has been identified as a prognostic biomarker in glioblastoma patients. Clinical studies revealed that glioblastoma patients with hypermethylated MGMT promoter have a better response to TMZ treatment and a significantly improved overall survival. In this study, we thus used the CRISPRoff genome editing tool to mediate targeted DNA methylation within the MGMT promoter region. The system carrying a CRISPR-deactivated Cas9 (dCas9) fused with a methyltransferase (Dnmt3A/3L) domain downregulated MGMT expression in TMZ-resistant human glioblastoma cell lines through targeted DNA methylation. The reduction of MGMT expression levels reversed TMZ resistance in TMZ-resistant glioblastoma cell lines resulting in TMZ induced dose-dependent cell death rates. In conclusion, we demonstrate targeted RNA-guided methylation of the MGMT promoter as a promising tool to overcome chemoresistance and improve the cytotoxic effect of TMZ in glioblastoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call