Abstract

The aim of the present study was to investigate the effects of decreasing leupaxin (LPXN) expression on the proliferation and invasion of human acute monocytic leukemia SHI-1 cells. The transfection efficiency of fluorescein amidite (FAM)-small interfering RNA (siRNA) was determined using flow cytometry, and the protein expression levels of LPXN, phosphorylated (p)-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein kinase (p38 MAPK) and p-extracellular-signal-regulated kinase (ERK) were detected by western blot analysis. Proliferation was determined using the cell counting kit-8 reagent and cellular transmembrane invasion ability was determined using a Transwell chamber system. The gelatinase levels of matrix metalloproteinase (MMP)-2 and MMP-9 in the cell culture supernatant were also analyzed by gelatin zymography. In SHI-1 cells, the optimal transfection conditions of siRNA were a cell density of 4×105 cells/ml and a ratio of siRNA/Lipofectamine® 2000 of 200 pmol/1 µl. The highest transfection efficiency of FAM-siRNA was 74.5%. In the present study, L2-siRNA was selected to effectively decrease the expression of LPXN. Following downregulation of LPXN expression by L2-siRNA, proliferation inhibition rates increased to 27.043±2.051 and cell transmembrane invasion rates decreased to 25.270±2.145 (P<0.05). The results of the western blot analysis and the gelatin zymography indicated that downregulation of LPXN expression increased the expression of p-p38 MAPK and p-JNK, and attenuated the secretion levels of MMP-2 and MMP-9. However, downregulation of LPXN expression had no effect on p-ERK expression in SHI-1 cells. The results of the present study indicated that downregulation of LPXN expression decreased the malignant proliferation and transmembrane invasion of SHI-1 cells by activating JNK and p38 MAPK, and inhibiting MMP-2 and MMP-9 secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.