Abstract

Long noncoding RNAs and microRNAs (miRNAs) play a vital role in spinal cord ischemia reperfusion (IR) injury. The aim of this study was to identify the potential interactions between taurine upregulated gene 1 (TUG1) and miRNA-29b-1-5p in a rat model of spinal cord IR. The IR injury was established by 14-minute occlusion of aortic arch. TUG1 and metadherin (MTDH) knockdown were induced by respective siRNAs, and miR-29b-1-5p expression was modulated using specific inhibitor or mimics. The interactions between TUG1, miR-29b-1-5p, and the target genes were determined using the dual-luciferase reporter assay. We found that IR respectively downregulated and upregulated miR-29b-1-5p and TUG1, and significantly increased MTDH expression. MTDH was predicted as a target of miR-29b-1-5p and its knockdown downregulated NF-κB and IL-1β levels. A direct interaction was observed between TUG1 and miR-29b-1-5p, and knocking down TUG1 upregulated the latter. Furthermore, overexpression of miR-29b-1-5p or knockdown of TUG1 alleviated blood-spinal cord barrier leakage and improved hind-limb motor function by suppressing MTDH and its downstream pro-inflammatory cytokines. Knocking down TUG1 also alleviated MTDH/NF-κB/IL-1β pathway-mediated inflammatory damage after IR by targeting miR-29b-1-5p, whereas blocking the latter reversed the neuroprotective effect of TUG1 knockdown and restored MTDH/NF-κB/IL-1β levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call