Abstract

Type I diabetic cardiomyopathy has consistently been shown to be associated with decrease of repolarising K+ currents, but the mechanisms responsible for the decrease are not well defined. We investigated the streptozotocin (STZ) rat model of type I diabetes. We utilized RNase protection assay and Western blot analysis to investigate the message expression and protein density of key cardiac K+ channel genes in the diabetic rat left ventricular (LV) myocytes. Our results show that message and protein density of Kv2.1, Kv4.2, and Kv4.3 are significantly decreased as early as 14 days following induction of type I diabetes in the rat. The results demonstrate, for the first time, that insulin-deficient type I diabetes is associated with early downregulation of the expression of key cardiac K+ channel genes that could account for the depression of cardiac K+ currents, Ito-f and Ito-s. These represent the main electrophysiological abnormality in diabetic cardiomyopathy and is known to enhance the arrhythmogenecity of the diabetic heart. The findings also extend the extensive list of gene expression regulation by insulin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.