Abstract

Hepatic stimulatory substance (HSS), which encodes a sulfhydryl oxidase enzyme, promotes liver regeneration (LR) and maintains the viability of hepatocytes. Surprisingly, we found that the levels of the HSS mRNA and expressed protein were both strongly repressed at 12h after a 70% partial hepatectomy (PH) in mice. Understanding the mechanism and effect of this extraordinary suppression can provide a novel path for exploring the molecular function of HSS during LR. We observed that the EGF levels in the serum were negatively correlated with HSS expression in regenerating livers. Treating primary mouse hepatocytes or Hepa1-6 cells with EGF suppressed HSS mRNA expression. This suppression was transcriptional and was mediated by the effect of EGF on the phosphorylation of CCAAT/enhancer-binding protein β (C/EBPβ), which regulates HSS expression. We further showed that the enhanced phosphorylation of C/EBPβ after PH promoted its interaction with the HSS promoter and repressed HSS expression at early time-points after PH. Interestingly, the knockdown of HSS caused a dramatic decrease in E-cadherin expression in hepatocytes. E-cadherin expression was also significantly suppressed at 12h after PH. Moreover, the pre-injection of HSS-expressing adenovirus vectors prevented E-cadherin suppression after PH. Treatment with C/EBPβ siRNA reversed the EGF-mediated inhibition of HSS expression and led to enhanced E-cadherin expression and reduced cell migration. Our findings suggest that C/EBPβ directly inhibits the HSS promoter after PH and that this inhibition can downregulate E-cadherin expression. These data provide novel insight into the potential role of HSS in hepatic structural reconstruction during LR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.