Abstract

MUC1 is a tumor-associated antigen that is aberrantly expressed in cancer and inflammatory bowel disease (IBD). Even though immune cells express low MUC1 levels, their modulations of MUC1 are important in tumor progression. Consistent with previous clinical data that show increased myeloid-derived suppressor cells (MDSCs) in IBD, we now show that downregulation of MUC1 on hematopoietic cells increases MDSCs in IBD, similar to our data in tumor-bearing mice. We hypothesize that MDSC expansion in IBD is critical for tumor progression. To mechanistically confirm the linkage between Muc1 downregulation and MDSC expansion, we generated chimeric mice that did not express Muc1 in the hematopoietic compartment (KO→WT). These mice were used in two models of colitis and colitis-associated cancer (CAC) and their responses were compared with wild-type (WT) chimeras (WT→WT). KO→WT mice show increased levels of MDSCs during colitis and increased protumorigenic signaling in the colon during CAC, resulting in larger colon tumors. RNA and protein analysis show increased upregulation of metalloproteinases, collagenases, defensins, complements, growth factors, cytokines, and chemokines in KO→WT mice as compared with WT→WT mice. Antibody-mediated depletion of MDSCs in mice during colitis reduced colon tumor formation during CAC. Development of CAC is a serious complication of colitis and our data highlight MDSCs as a targetable link between inflammation and cancer. In addition, the lack of MUC1 expression on MDSCs can be a novel marker for MDSCs, given that MDSCs are still not well characterized in human cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.