Abstract

BackgroundFreshly isolated mouse embryonic fibroblasts (MEFs) have great proliferation capacity but quickly enter senescent state after several rounds of cell cycle, a process called premature senescence. Cellular senescence can be induced by various stresses such as telomere erosion, DNA damage, and oncogenic signaling. But the contribution of other molecules, such as growth factors, to cellular senescence is incompletely understood. This study aimed to compare the gene expression difference between non-senescent and senescent MEFs to identify the key molecule(s) involved in the spontaneous senescence of MEFs.Material/MethodsPrimary MEFs were isolated from E12.5 pregnant C57/BL6 mice. The cells were continuously cultured in Dulbecco’s Modified Eagle Medium for 9 passages. SA-β-Gal staining was used as an indicator of cell senescence. The supernatant from primary MEFs (P1 medium) or Passage 6 MEFs (P6 medium) were used to culture freshly isolated MEFs to observe the effects on cell senescence state. Gene expression profiles of primary and senescent MEFs were investigated by RNA-Seq to find the key genes involved in cell senescence. Adipocyte differentiation assay was used to evaluate the stemness of MEFs cultured in FGF2-stimulated medium.ResultsThe senescence of MEFs cultured in the P1 medium was alleviated when compared to the P6 medium. Downregulation of FGF2 expression was revealed by RNA-Seq and further confirmed by real-time quantitative polymerase chain reaction and western blot. FGF2-stimulated medium also had anti-senescence function and could maintain the differentiation ability of MEFs.ConclusionsThe premature senescence of MEFs was at least partially caused by FGF2 deficiency. Exogenous FGF2 could alleviate the senescent phenotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call