Abstract

BackgroundSuperoxide dismutase (SOD), a central component of the antioxidant defence system of most organisms, removes excess superoxide anions by converting them to oxygen and hydrogen peroxide. As iron (Fe) SOD is absent in the human host, this enzyme is a promising molecular target for drug development against trypanosomatids.ResultsWe obtained Leishmania infantum mutant clones with lower FeSOD-A expression and investigated their phenotypes. Our attempts to delete this enzyme-coding gene using three different methodologies (conventional allelic replacement or two different CRISPR/methods) failed, as FeSOD-A gene copies were probably retained by aneuploidy or gene amplification. Promastigote forms of WT and mutant parasites were used in quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blot analyses, and these parasite forms were also used to assess drug susceptibility. RT-qPCR and western blot analyses revealed that FeSOD-A transcript and protein levels were lower in FeSOD-A−/−/+L. infantum mutant clones than in the wild-type (WT) parasite. The decrease in FeSOD-A expression in L. infantum did not interfere with the parasite growth or susceptibility to amphotericin B. Surprisingly, FeSOD-A−/−/+L. infantum mutant clones were 1.5- to 2.0-fold more resistant to trivalent antimony and 2.4- to 2.7-fold more resistant to miltefosine. To investigate whether the decrease in FeSOD-A expression was compensated by other enzymes, the transcript levels of five FeSODs and six enzymes from the antioxidant defence system were assessed by RT-qPCR. The transcript level of the enzyme ascorbate peroxidase increased in both the FeSOD-A−/−/+ mutants tested. The FeSOD-A−/−/+ mutant parasites were 1.4- to 1.75-fold less tolerant to oxidative stress generated by menadione. Infection analysis using THP-1 macrophages showed that 72 h post-infection, the number of infected macrophages and their intracellular multiplication rate were lower in the FeSOD-A−/−/+ mutant clones than in the WT parasite.ConclusionsThe unsuccessful attempts to delete FeSOD-A suggest that this gene is essential in L. infantum. This enzyme plays an important role in the defence against oxidative stress and infectivity in THP-1 macrophages. FeSOD-A-deficient L. infantum parasites deregulate their metabolic pathways related to antimony and miltefosine resistance.Graphic

Highlights

  • Superoxide dismutase (SOD), a central component of the antioxidant defence system of most organisms, removes excess superoxide anions by converting them to oxygen and hydrogen peroxide

  • This attempt was unsuccessful, leading to the retention of one copy of the gene by aneuploidy or gene amplification even after the correct integration of two different selectable markers replacing Iron superoxide dismutase (FeSOD)-A. The presence of both neomycin phosphotransferase (NEO) and hygromycin phosphotransferase (HYG) cassettes and their correct integration into the L. infantum genome replacing FeSOD-A was confirmed by PCR in all tested mutant clones (Fig. 1a, b)

  • FeSOD-A protein expression was evaluated in WT parasites, FeSOD-A−/+ clones C5 and C6, and FeSODA−/−/+ clones C1 and C2 by western blotting using a polyclonal antibody produced against the recombinant

Read more

Summary

Introduction

Superoxide dismutase (SOD), a central component of the antioxidant defence system of most organisms, removes excess superoxide anions by converting them to oxygen and hydrogen peroxide. As iron (Fe) SOD is absent in the human host, this enzyme is a promising molecular target for drug development against trypanosomatids. Leishmaniases are zoonotic or anthroponotic infectious diseases caused by the protozoan parasites of the genus Leishmania. More than 21 species of Leishmania are known to infect humans and are transmitted by the bite of more than 90 species of female sandflies. The therapeutic failure of leishmaniasis is a major concern, and is probably related to the parasite’s resistance to treatment and the patient’s nutritional status, age, sex, and immunity. Another major concern with available therapies is their toxicity and side effects [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call