Abstract

BackgroundCircular RNAs (circRNAs) are involved in the development of human cancers, including cervical cancer (CC). However, the role and mechanism of the circRNA hsa_circ_0000285 (circ_0000285) in CC development remain largely unknown.MethodsThirty paired CC and adjacent normal tissue samples were harvested. CC cell lines SiHa and HeLa were cultured in this study. The expression of circ_0000285, miR197-3p and ELK1 was detected via qRT-PCR or Western blot. CC development was assessed via cell viability, colony formation, apoptosis, cell cycle, and autophagy using MTT, colony-formation assays, flow cytometry and Western blot. The target association was analyzed via dual luciferase–reporter assay, RNA immunoprecipitation, and RNA pull-down. The role of circ_0000285 in CC in vivo was analyzed using a xenograft model.Resultscirc_0000285 abundance was enhanced in CC tissue and cells and mainly located in cytoplasm. Silence of circ_0000285 suppressed cell viability and colony formation, arrested the cell cycle at the G0/G1 phase, and induced apoptosis and autophagy in CC cells. miR197-3p was targeted by circ_0000285, and miR197-3p knockdown reversed the effect of circ_0000285 silence on CC development. miR197-3p directly targeted ELK1 to inhibit CC development. circ_0000285 regulated ELK1 by modulating miR197-3p. Knockdown of circ_0000285 reduced xenograft tumor growth in vivo.ConclusionKnockdown of circ_0000285 repressed CC development by increasing miR197-3p and decreasing ELK1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call