Abstract

EGF receptor (EGFR) overexpression correlates with metastasis in a variety of carcinomas, but the underlying mechanisms are poorly understood. We demonstrated that EGF disrupted cell-cell adhesion and caused epithelial-to-mesenchymal transition (EMT) in human tumor cells overexpressing EGFR, and also induced caveolin-dependent endocytosis of E-cadherin, a cell-cell adhesion protein. Chronic EGF treatment resulted in transcriptional downregulation of caveolin-1 and induction of the transcriptional repressor Snail, correlating with downregulation of E-cadherin expression. Caveolin-1 downregulation enhanced β-catenin-TCF/LEF-1 transcriptional activity in a GSK-3β-independent manner. Antisense RNA-mediated reduction of caveolin-1 expression in EGFR-overexpressing tumor cells recapitulated these EGF-induced effects and enhanced invasion into collagen gels. We propose that EGF-induced negative regulation of caveolin-1 plays a central role in the complex cellular changes leading to metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.