Abstract

Arsenite is a toxic metalloid that causes various adverse effects in the brain. However, the underlying mechanisms of arsenite-induced neurotoxicity remain poorly understood. In this study, both adult beclin 1+/+ and beclin 1+/- mice were employed to establish a model of chronic arsenite exposure by treating with arsenite via drinking water for 6 months. The results clearly demonstrated that exposure to arsenite profoundly caused damage to the cerebral cortex, induced autophagy and impaired autophagic flux in the cerebral cortex. Heterozygous disruption of beclin 1 in animals remarkably alleviated the neurotoxic effects of arsenite. To verify the results obtained in the animals, a permanent U251 cell line was used. After treating of cells with arsenite, similar phenomenon was also observed, showing the significant elevation in the expression levels of autophagy-related genes. Importantly, lysosomal dysfunction caused by arsenite was observed in vitro and in vivo. Either knockdown of beclin 1 in cells or heterozygous disruption of beclin 1 in animals remarkably alleviated the lysosomal dysfunction induced by arsenite. These findings indicate that downregulation of beclin 1 could restore arsenite-induced impaired autophagic flux possibly through improving lysosomal function, and correct that regulation of autophagy via beclin 1 would be an alternative approach for the treatment of arsenite neurotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.