Abstract

DNA hypomethylation plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). Here we investigated whether 3-hydroxy butyrate dehydrogenase 2 (BDH2), a modulator of intracellular iron homeostasis, was involved in regulating DNA hypomethylation and hyper-hydroxymethylation in lupus CD4+ T cells. Our results showed that BDH2 expression was decreased, intracellular iron was increased, global DNA hydroxymethylation level was elevated, while methylation level was reduced in lupus CD4+ T cells compared with healthy controls. The decreased BDH2 contributed to DNA hyper-hydroxymethylation and hypomethylation via increasing intracellular iron in CD4+ T cells, which led to overexpression of immune related genes. Moreover, we showed that BDH2 was the target gene of miR-21. miR-21 promoted DNA demethylation in CD4+ T cells through inhibiting BDH2 expression. Our data demonstrated that the dysregulation of iron homeostasis in CD4+ T cells induced by BDH2 deficiency contributes to DNA demethylation and self-reactive T cells in SLE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call