Abstract

Protein aggregation is invariably associated with the inflammation as a factor in Alzheimer's disease (AD). We investigated the interaction between downstream factors of endoplasmic reticulum (ER) stress pathway and inflammation, with implications in cognitive impairment in AD. Amyloid-β(Aβ)(1-42) was administered by bilateral intracerebroventricular (icv) injection in the brain of adult male Wistar rats to experimentally develop AD. The cognitive impairment was assessed by measuring behavioral parameters such as Morris water maze and novel object recognition tests. Levels of pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α and anti-inflammatory cytokines IL-4 and IL-10 were measured by the enzyme-linked immunosorbent assay (ELISA) in different rat brain regions. Inflammatory marker proteins such as cyclo-oxygenase (COX)-2 and phosphorylation of nuclear factor kappa B(NF-КB) (p65) were measured by the western blotting. Gene expression of ER stress downstream factors such as ATF-4, CHOP, and GADD-34 was analyzed by qRT-PCR. Histological studies were performed to check Aβ accumulation and neuronal degeneration. Integrated stress response inhibitor (ISRIB) was used to confirm the specific role of ER stress-mediated inflammation in cognitive impairment. Administration of Aβ(1-42) resulted in alteration in levels of inflammatory cytokines, inflammatory proteins, and mRNA levels of ER stress downstream factors. ISRIB treatment resulted in attenuation of Aβ(1-42)-induced ER stress, inflammation, neurodegeneration, and cognitive impairment in rats. These results indicate that ER stress-mediated inflammation potentiates the cognitive impairment in AD. An understanding of cascade of events, interaction of ER stress which was a hallmark of the present investigation together with inflammation and modulation of downstream signalling factors could serve as potent biomarkers to study AD progression. Schematic representation of interaction between ER stress and inflammation. Administration of Aβ(1-42) resulted in ER stress which caused the activation of factors of PERK pathway, inflammation, neuronal degeneration, and cognitive impairment. ISRIB treatment caused downregulation of ATF-4 and attenuation of inflammation indicating a role of ER stress-mediated inflammation in the cognitive impairment in AD. The site of action of ISRIB is shown in blue color.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call