Abstract
Myocardial infarction (MI) is a leading cause of heart failure (HF), associated with morbidity and mortality worldwide. As an essential part of gene expression regulation, the role of alternative polyadenylation (APA) in post-MI HF remains elusive. Here, we revealed a global, APA-mediated, 3' untranslated region (3' UTR)-lengthening pattern in both human and murine post-MI HF samples. Furthermore, the 3' UTR of apoptotic repressor gene, AVEN, is lengthened after MI, contributing to its downregulation. AVEN knockdown increased cardiomyocyte apoptosis, whereas restoration of AVEN expression substantially improved cardiac function. Mechanistically, AVEN 3' UTR lengthening provides additional binding sites for miR-30b-5p and miR-30c-5p, thus reducing AVEN expression. Additionally, PABPN1 (poly(A)-binding protein 1) was identified as a potential regulator of AVEN 3' UTR lengthening after MI. Altogether, our findings revealed APA as a unique mechanism regulating cardiac injury in response to MI and also indicated that the APA-regulated gene, AVEN, holds great potential as a critical therapeutic target for treating post-MI HF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.