Abstract

BackgroundImmune thrombocytopenia (ITP) is the most common etiology of acquired thrombocytopenia diseases in children. ITP is characterized by the immune-mediated decreased formation and excessive destruction of platelets. The pathogenesis and management of pediatric ITP are distinct from adult ITP. A disintegrin and metalloproteinase 17 (ADAM17) mediates the shedding of platelet receptor glycoprotein Ib α (GPIb α) in extracellular domain, functioning in the platelet activation and clearance. Our study aims to probe the roles and mechanisms of ADAM17 in pediatric ITP.MethodsThe differently expressed ADAM17 in megakaryocytes was obtained from children with ITP through the next-generation RNA-Sequence. Hematoxylin-eosin and Giemsa staining were performed for cell morphology identification. Flow cytometry was applied to assess autoantibodies against platelets, subtypes of lymphocytes, the surface expression level of ADAM17 and polyploidization of megakaryocytes, as well as the full-length GP Ib α.ResultsADAM17 was significantly downregulated in megakaryocytes and platelets in children with ITP. Higher values of PDW and positive autoantibodies presence were observed in children with ITP. Loss of ADAM17 in mice led to defects in proplatelet formation and significantly elevated expression of phosphorylated myosin light chain (p-MLC) in megakaryocytes.ConclusionsOur study indicated that the downregulation of ADAM17 might be an innate cause of inefficient platelet production in pediatric ITP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.