Abstract

Blood pH controls the activity of important regulatory enzymes in the metabolism. Serine dehydratase (SerDH) transforms l-serine into pyruvate and ammonium and is involved in the regulation of gluconeogenesis from serine in the rat liver. In this work, we investigate the effect of chronic metabolic acidosis on the kinetics, specific protein level, tissue location, and mRNA levels of rat liver SerDH. Experimental acidosis was induced in rats by ingestion of 0.28 M ammonium chloride solution for 10 days. Acidosis significantly (P<0.05) decreased SerDH activity at all substrate concentrations assayed. Moreover, the Vmax value was 38.50+/-3.51 mU/mg (n=7) of mitochondrial protein in the acidotic rats and 92.49+/-6.79 mU/mg (n=7) in the control rats. Western blot analysis revealed a significant reduction (14%) in the level of SerDH protein content in the rat liver during acidosis. Immunohistochemical analysis showed that SerDH location did not change in response to chronic metabolic acidosis and confirmed previous results on SerDH protein levels. Moreover, the SerDH mRNA level, estimated by RT-PCR, was also significantly 33.8% lower than in control. These results suggest that during experimental acidosis a specific repression of rat-liver SerDH gene transcription could result, lowering the amount and activity of this enzyme. The changes found in SerDH expression are part of an overall metabolic response of liver to maintain acid-base homeostasis during acidosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.