Abstract

The clinical use of aminoglycoside antibiotics is partly limited by their ototoxicity. The pathogenesis of aminoglycoside-induced ototoxicity still remains unknown. Here, RNA-sequencing was conducted to identify differentially expressed genes in rat cochlear organotypic cultures treated with gentamicin (GM), and 232 and 43 genes were commonly up- and downregulated, respectively, at day 1 and 2 after exposure. Ubiquitin carboxyl-terminal hydrolase isozyme L1 (Uchl1) was one of the downregulated genes whose expression was prominent in spiral ganglion cells (SGCs), lateral walls, as well as efferent nerve terminal and nerve fibers. We further investigated if a deficit of Uchl1 in organotypic cochlea and the House Ear Institute-Organ of Corti 1 (HEI-OC1) cells accelerates ototoxicity. We found that a deficit in Uchl1 accelerated GM-induced ototoxicity by showing a decreased number of SGCs and nerve fibers in organotypic cochlear cultures and HEI-OC1 cells. Furthermore, Uchl1-depleted HEI-OC1 cells revealed an increased number of autophagosomes accompanied by decreased lysosomal fusion. These data indicate that the downregulation of Uchl1 following GM treatment is deleterious to auditory cell survival, which results from the impaired autophagic flux. Our results provide evidence that UCHL1-dependent autophagic flux may have a potential as an otoprotective target for the treatment of GM-induced auditory cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.