Abstract

This study discusses the critical role of the metalloproteinase meprinβ in the progression of glomerulonephritis. Using a microarray technique, the gene expression profiles in glomeruli isolated from high serum IgA (HIGA) mice with a purity of 97% or greater were examined. HIGA mice are a valid model of human IgA nephropathy (IgAN), with the typical pathological features of this condition, including a consistently high serum IgA level as well as dominant mesangial IgA deposition and mesangial enlargement. Among the many upregulated/downregulated genes after the development of IgAN, the downregulation of meprinβ was intriguing. The expression level of the meprinβ gene at 40 weeks of age was 52% of that observed at 8 weeks of age (prior to the development of IgAN), although in the control BALB/c mice, a 2.19-fold elevation was seen. These results were also confirmed by semi-quantitative RT-PCR and immunostaining analyses. As meprinβ is a subunit of metalloproteinase meprins (meprin A, meprin B) and meprins are capable of proteolytically degrading extracellular matrix (ECM) components and proteolytically processing bioactive peptides, the downregulation of meprinβ may contribute to the progression of glomerulonephritis and the eventual glomerular scarring. This working hypothesis was examined using an in vivo meprinβ inhibition study. The inhibition of meprins by actinonin exacerbated some parameters of renal injury in mice afflicted with anti-glomerular basement membrane (anti-GBM) antibody-associated nephritis. These in vitro and in vivo results suggest that meprinβ may play a protective role against the progression of renal injury through the degradation of ECM and bioactive peptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call