Abstract

In this paper, we analyze the signal-to-interference-plus-noise ratio (SINR) performance at a mobile station (MS) in a random cellular network. The cellular network is formed by base stations (BSs) placed in a one-, two-, or three-dimensional space according to a possibly non-homogeneous Poisson point process, which is a generalization of the so-called shotgun cellular system. We develop a sequence of equivalence relations for the SCSs and use them to derive semi-analytical expressions for the coverage probability at the MS when the transmissions from each BS may be affected by random fading with arbitrary distributions as well as attenuation following arbitrary path-loss models. For homogeneous Poisson point processes in the interference-limited case with power-law path-loss model, we show that the SINR distribution is the same for all fading distributions and is not a function of the base station density. In addition, the influence of random transmission power, power control, and multiple channel reuse groups on the downlink performance is also discussed. The techniques developed for the analysis of SINR have applications beyond cellular networks and can be used in similar studies for cognitive radio networks, femtocell networks, and other heterogeneous and multi-tier networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.