Abstract
We consider a downlink massive MIMO system, where the base station simultaneously sends information and energy to information users and energy users, respectively. The aim is to maximize the minimum harvested energy among the energy users while meeting the rate requirements of information users. With perfect channel state information (CSI), the problem is solved by obtaining the asymptotically optimal power allocation of information users and the combination coefficients of the energy precoder. For the CSI estimation in time-division duplex systems, orthogonal pilot sequences are employed by information users during the uplink, and one common pilot sequence is shared by all energy users. It is shown that the energy-harvesting performance of such a shared pilot scheme is always better than that of the orthogonal pilot scheme. Further, exploiting the intercell interference in multicell systems, a joint precoder is proposed for cooperative energy transfer, for which both the centralized and distributed implementations are given. Results indicate that the cooperative energy transfer always outperforms the noncooperative scheme with either perfect or estimated CSI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.