Abstract

A model subspace configuration interaction method is developed to obtain chemically accurate electron correlations by diagonalizing a very compact effective Hamiltonian of a realistic molecule. The construction of the effective Hamiltonian is deterministic and implemented by iteratively building a sufficiently small model subspace comprising local clusters of a small number of Slater determinants. Through the low-rank reciprocal of interaction Hamiltonian, important determinants can be incrementally identified to couple with selected local pairwise clusters and then downfolded into the model subspace. This method avoids direct ordering and selection of the configurations in the entire space. We demonstrate the efficiency and accuracy of this theory for obtaining the near-FCI ground- and excited-state potential energies by benchmarking the C2 molecule and illustrate its application potential in computing accurate excitation energies of organometallic [Cu(NHC)2(pyridine)2]x+ complexes and other organic molecules of various excitation character.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.