Abstract
Abstract Digital trace data enable researchers to study communication processes at a scale previously impossible. We combine social network analysis and automated content analysis to examine source and message factors’ impact on ratings of user-shared content. We found that the expertise of the author, the network position that the author occupies, and characteristics of the content the author creates have a significant impact on how others respond to that content. By observationally examining a large-scale online community, we provide a real-world test of how message consumers react to source and message characteristics. Our results show that it is important to think of online communication as occurring interactively between networks of individuals, and that the network positions people inhabit may inform their behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.