Abstract

We address how a conflict between pollinator attraction and avoidance of flower predation influences the evolution of flower shape in Polemonium viscosum. Flower shape in P. viscosum is the product of an isometric relationship between genetically correlated (rA = 0.70) corolla flare and length. Bumblebee pollinators preferentially visit flowers that are more flared and have longer tubes, selecting for a funnel-shaped corolla. However, flower shape also influences nectar-foraging ants that sever the style at its point of attachment to the ovary. Surveys of ant damage show that plants having flowers with flared, short corollas are most vulnerable to ant predation. Consistent with this result, the ratio of corolla length to flare is significantly greater in a krummholz (high predation risk) population than in a tundra (low predation risk) population. To explicitly test whether the evolution of a better defended flower would exact a cost in pollination, we created tubular flowers by constricting the corolla during development. Performance of tubular flowers and natural controls was compared for defensive and attractive functions. In choice trials, ants entered control flowers significantly more often than tubular ones, confirming that the evolution of tubular flowers would reduce the risk of predation. However, in a bumblebee-pollinated population, tubular flowers received significantly less pollen and set fewer seeds than controls. A fitness model incorporating these data predicts that in the absence of the genetic correlation between corolla length and flare, intermittent selection for defense could allow tubular flowers to spread in the krummholz population. However, in the tundra, where bumblebees account for nearly all pollination, the model predicts that tubular flowers should always confer a fitness disadvantage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.