Abstract
The current consensus is that iodothyronines down-regulate type II T4 monodeiodinase (5'-DII) by an extranuclear acceleration of enzyme inactivation. We have investigated 5'-DII regulation in cultured GC cells, in which thyroid hormone responses are mediated by nuclear thyroid receptor (TR). GC cells actively converted T4 to T3, independent of propylthiouracil and with a Km of 1.4 nM, which are characteristics of 5'-DII. When GC cells were incubated with 10 nM T3, the Km was not affected. However, the maximum velocity was significantly down-regulated by 10 nM T3, from 0.15 to 0.018 pmol/mg protein.min. Dose-response studies showed that a 50% reduction in enzyme activity was achieved with either 0.25 nM T3 or 12 nM rT3. Time-course studies showed that a 50% reduction in enzyme activity occurred after 40 min of incubation with 100 nM rT3 and after 160 min of incubation with 10 nM T3. The down-regulation of 5'-DII by physiological concentrations of T3 has the characteristics of an effect that is mediated by nuclear TR. Our studies, therefore, suggest that down-regulation of 5'-DII by these iodothyronines in GC cells may occur by different mechanisms: enzyme inactivation for rT3, in agreement with the current consensus, and decreased enzyme production for T3, probably mediated by TR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.