Abstract

BackgroundRecent evidence has underscored the role of hypoxia and angiogenesis in the pathogenesis of idiopathic fibrotic lung disease. Inhibitor of growth family member 4 (ING4) has recently attracted much attention as a tumor suppressor gene, due to its ability to inhibit cancer cell proliferation, migration and angiogenesis. The aim of our study was to investigate the role of ING4 in the pathogenesis of pulmonary fibrosis both in the bleomycin (BLM)-model and in two different types of human pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF) and cryptogenic organizing pneumonia (COP).MethodsExperimental model of pulmonary fibrosis was induced by a single tail vein injection of bleomycin in 6- to 8-wk-old C57BL/6mice. Tissue microarrays coupled with qRT-PCR and immunohistochemistry were applied in whole lung samples and paraffin-embedded tissue sections of 30 patients with IPF, 20 with COP and 20 control subjects.ResultsA gradual decline of ING4 expression in both mRNA and protein levels was reported in the BLM-model. ING4 was also found down-regulated in IPF patients compared to COP and control subjects. Immunolocalization analyses revealed increased expression in areas of normal epithelium and in alveolar epithelium surrounding Masson bodies, in COP lung, whereas showed no expression within areas of active fibrosis within IPF and COP lung. In addition, ING4 expression levels were negatively correlated with pulmonary function parameters in IPF patients.ConclusionOur data suggest a potential role for ING4 in lung fibrogenesis. ING4 down-regulation may facilitate aberrant vascular remodelling and fibroblast proliferation and migration leading to progressive disease.

Highlights

  • Idiopathic interstitial pneumonias (IIPs) are a heterogeneous group of diffuse parenchymal diseases comprising of seven distinct clinical and pathological entities[1]

  • The aim of our study was to investigate the role of Inhibitor of growth family member 4 (ING4) in the pathogenesis of pulmonary fibrosis by assessing its expression both in the bleomycin (BLM)-model and in two different types of human pulmonary fibrosis by using tissue microarrays, quantitative reverse transcription-polymerase chain reaction (PCR) and immunohistochemistry

  • Decreased ING4 expression in the BLM model of pulmonary fibrosis following disease progression As angiogenesis[15,18,19] and apoptosis[20,21] represent two of the major pathogenetic hallmarks of pulmonary fibrosis and since hypoxia inducible factor (HIF)-1a, the major transcription factor of hypoxia-related genes involved in angiogenesis and apoptosis, has been recently implicated in the pathogenesis of fibrotic lung disease we sought to investigate the expression of its inhibitor, ING4, both in mRNA and protein level using quantitative reverse transcription (qRT)-PCR and immunohistochemistry analysis, respectively, in a well characterized model of pulmonary fibrosis

Read more

Summary

Introduction

Idiopathic interstitial pneumonias (IIPs) are a heterogeneous group of diffuse parenchymal diseases comprising of seven distinct clinical and pathological entities[1]. Among others idiopathic pulmonary fibrosis (IPF) and cryptogenic organizing pneumonia (COP) represent two of the most prevalent members of the disease group with major differences in pathogenesis, clinical course and prognosis. Inhibitor of growth family member 4 (ING4) languished in relative obscurity until the past three years when it emerged to function as a tumor suppressor gene, repressing cell proliferation[7], tumor growth[8], loss of contact inhibition [8,9,10] and angiogenesis[10]. The aim of our study was to investigate the role of ING4 in the pathogenesis of pulmonary fibrosis both in the bleomycin (BLM)-model and in two different types of human pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF) and cryptogenic organizing pneumonia (COP)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call