Abstract

A specialized Ca(2+) transient at fertilization represents the universal driver for the egg-to-embryo transition. Ca(2+) signaling remodels during oocyte maturation to endow the egg with the capacity to produce the specialized Ca(2+) transient at fertilization, which takes the form of a single (e.g. Xenopus) or multiple (e.g. mouse) Ca(2+) spikes depending on the species. Store-operated Ca(2+) entry (SOCE) is the predominant Ca(2+) influx pathway in vertebrate oocytes, and in Xenopus SOCE completely inactivates during meiosis. Here, we show that SOCE is downregulated during mouse meiosis, but remains active in mature metaphase II eggs. SOCE inhibition is due to a decreased ability of the Ca(2+) sensor STIM1 to translocate to the cortical endoplasmic reticulum domain and due to internalization of Orai1. Reversing SOCE downregulation by overexpression of STIM1 and Orai1 prolongs the Ca(2+) oscillations at egg activation and disrupts the egg-to-embryo transition. Thus, SOCE downregulation during mammalian oocyte maturation is a crucial determinant of the fertilization-specific Ca(2+) transient, egg activation and early embryonic development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call