Abstract

The protective effect of vitamin E supplements has been questioned, possibly because they often contain only alpha-tocopherol, and recent studies indicate that gamma-tocopherol also has important properties. The aim of this study was to investigate whether the levels of DNA lesions in middle-aged, overweight males could be reduced by consumption of low doses of an antioxidant supplement for six weeks, designed to imitate a balanced diet. The participants (n=60) were randomly divided into: placebo, single-, and double-dose groups. Genotoxic and oxidative DNA lesions in mononuclear cells were measured with the Comet assay, before and after supplement administration. Furthermore, a cell study was performed to investigate if pre-incubation of a human lung cell line (A549) with alpha- and gamma-tocopherol (5 and 50 microM for 23 hours) could protect against induced oxidative DNA lesions as measured by the Comet assay. The level of oxidative DNA lesions in the double-dose group was significantly lower than in the control group. Oxidative DNA lesions correlated only to changes in serum gamma-tocopherol, and not alpha-tocopherol. In the cell study, only gamma-tocopherol protected cells against induced oxidative DNA lesions. We therefore hypothesize that gamma-tocopheol rather than alpha-tocopherol is involved in reducing oxidative DNA lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.