Abstract
Chilling-induced accumulation of reactive oxygen species (ROS) is harmful to plants, which usually produce anthocyanins to scavenge ROS as protection from chilling stress. As a tropical crop, cassava is hypersensitive to chilling, but the biochemical basis of this hypersensitivity remains unclear. We previously generated MeMYB2-RNAi transgenic cassava with increased chilling tolerance. Here we report that MeMYB2-RNAi transgenic cassava accumulated less ROS but more cyanidin-3-O-glucoside than the wild type under early chilling stress. Under this stress, the anthocyanin biosynthesis pathway was more active in MeMYB2-RNAi lines than in the wild type, and several genes involved in the pathway, including MeTT8, were up-regulated by MeMYB2-RNAi in the transgenic cassava. MeMYB2 bound to the MeTT8 promoter and blocked its expression under both normal and chilling conditions, thereby inhibiting anthocyanin accumulation. MeTT8 was shown to bind to the promoter of Dihydroflavonol 4-reductase (MeDFR-2) and increased MeDFR-2 expression. MeMYB2 appears to act as an inhibitor of chilling-induced anthocyanin accumulation during the rapid response of cassava to chilling stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.