Abstract

Several investigations have suggested a putative tumor suppressor role for lysyl oxidase because it is down-regulated in many human and oncogene-induced tumors. To address this issue we down-regulated the enzyme in normal rat kidney fibroblasts by stable transfection of its cDNA in an antisense orientation. The selected clones revealed an absence of lysyl oxidase and dramatic phenotypic changes, interpretable as signs of transformation. The antisense lysyl oxidase clones showed, indeed, loose attachment to the plate and anchorage-independent growth and were highly tumorigenic in nude mice. Moreover, we found an impaired response of the PDGF and IGF-1 receptors to their ligands. In particular, the transformed cells showed a down-regulation of both PDGF receptors and expressed the 105-kDa isoform of the IGF-1 beta receptor, which was not present in the normal control cells. The lack of response to PDGF-BB has been described as a feature of many ras-transformed phenotypes. Therefore, we looked at the status of the p21(ras). Indeed, we found a significantly higher level of active p21(ras) both during steady-state growth and prolonged starvation. Our data reveal new evidence for a tumor suppressor activity of lysyl oxidase, highlighting its particular role in controlling Ras activation and growth factor dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.