Abstract
The suppression of male-specific, GH pulse-induced, liver transcription in adult female rats has been linked to the down-regulation of STAT5b activation by the female plasma pattern of near-continuous GH exposure. The mechanism underlying this down-regulation was studied in the rat liver cell line CWSV-1, where continuous GH suppressed the level of activated (tyrosine- phosphorylated) STAT5b to approximately 10-20% of the maximal GH pulse-induced STAT5b signal within 3 h. In contrast to the robust JAK2 kinase-dependent STAT5b activation loop that is established by a GH pulse, JAK2 kinase signaling to individual STAT5b molecules was found to be short lived in cells treated with GH continuously. Moreover, maintenance of the low-level STAT5b signal required ongoing protein synthesis and persisted for at least 7 days provided that GH was present in the culture continuously. Increased STAT5b DNA-binding activity was observed in cells treated with the proteasome inhibitor MG132, suggesting that at least one component of the GH receptor (GHR)-JAK2-STAT5b signaling pathway becomes labile in response to continuous GH treatment. The phosphotyrosine phosphatase inhibitor pervanadate fully reversed the down-regulation of STAT5b DNA-binding activity in continuous GH-treated cells by a mechanism that involves both increased STAT5b activation and decreased STAT5b dephosphorylation. Moreover, the requirement for ongoing GH stimulation and active protein synthesis to maintain STAT5b activity in continuous GH-treated cells were both eliminated by pervanadate treatment, suggesting that phosphotyrosine dephosphorylation may be an obligatory first step in the internalization/degradation pathway for the GHR-JAK2 complex. Finally, the sustaining effect of the serine kinase inhibitor H7 on GH pulse-induced JAK2 signaling to STAT5b was not observed in continuous GH-treated cells. These findings suggest a model where continuous GH exposure of liver cells down-regulates the STAT5b pathway by a mechanism that involves enhanced dephosphorylation of both STAT5b and GHR-JAK2, with the latter step leading to increased internalization/degradation of the re-ceptor-kinase complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.