Abstract

BackgroundThe chemoresistance of prostate cancer (PCa) is invariably associated with the aggressiveness and metastasis of this disease. New emerging evidence indicates that the epithelial-to-mesenchymal transition (EMT) may play pivotal roles in the development of chemoresistance and metastasis. As a hallmark of EMT, E-cadherin is suggested to be a key marker in the development of chemoresistance. However, the molecular mechanisms underlying PCa chemoresistance remain unclear. The current study aimed to explore the association between EMT and chemoresistance in PCa as well as whether changing the expression of E-cadherin would affect PCa chemoresistance.MethodsParental PC3 and DU145 cells and their chemoresistant PC3-TxR and DU145-TxR cells were analyzed. PC3-TxR and DU145-TxR cells were transfected with E-cadherin-expressing lentivirus to overexpress E-cadherin; PC3 and DU145 cells were transfected with small interfering RNA to silence E-cadherin. Changes of EMT phenotype-related markers and signaling pathways were assessed by Western blotting and quantitative real-time polymerase chain reaction. Tumor cell migration, invasion, and colony formation were then evaluated by wound healing, transwell, and colony formation assays, respectively. The drug sensitivity was evaluated using MTS assay.ResultsChemoresistant PC3-TxR and DU145-TxR cells exhibited an invasive and metastatic phenotype that associated with EMT, including the down-regulation of E-cadherin and up-regulation of Vimentin, Snail, and N-cadherin, comparing with that of parental PC3 and DU145 cells. When E-cadherin was overexpressed in PC3-TxR and DU145-TxR cells, the expression of Vimentin and Claudin-1 was down-regulated, and tumor cell migration and invasion were inhibited. In particular, the sensitivity to paclitaxel was reactivated in E-cadherin-overexpressing PC3-TxR and DU145-TxR cells. When E-cadherin expression was silenced in parental PC3 and DU145 cells, the expression of Vimentin and Snail was up-regulated, and, particularly, the sensitivity to paclitaxel was decreased. Interestingly, Notch-1 expression was up-regulated in PC3-TxR and DU145-TxR cells, whereas the E-cadherin expression was down-regulated in these cells comparing with their parental cells. The use of γ-secretase inhibitor, a Notch signaling pathway inhibitor, significantly increased the sensitivity of chemoresistant cells to paclitaxel.ConclusionThe down-regulation of E-cadherin enhances PCa chemoresistance via Notch signaling, and inhibiting the Notch signaling pathway may reverse PCa chemoresistance.

Highlights

  • The chemoresistance of prostate cancer (PCa) is invariably associated with the aggressiveness and metastasis of this disease

  • We aimed to explore whether epithelial-to-mesenchymal transition (EMT), especially the epithelial marker E-cadherin, plays a role in the chemoresistance of PCa and tried to identify new therapeutic targets

  • Chemoresistant PCa cells exhibited EMT morphologic changes and expressed EMT‐associated markers We first observed the morphologic changes in PC3-TxR and DU145-TxR cells compared with their parental PC3 and DU145 cells, respectively

Read more

Summary

Introduction

The chemoresistance of prostate cancer (PCa) is invariably associated with the aggressiveness and metastasis of this disease. As a hallmark of EMT, E-cadherin is suggested to be a key marker in the development of chemoresistance. Prostate cancer (PCa) is the most common cancer and the second leading cause of cancer-related deaths in men in western countries [1, 2]. In 2014, approximately 233,000 new cases of PCa were diagnosed and an estimated 29,480 deaths occurred in the United States [2]. Chemotherapy is a major clinical treatment for castration-resistant PCa. multidrug resistance remains a key challenge for the success of chemotherapy [7, 8]. Chemoresistant metastatic PCa is the most lethal form of cancer in adult men [9].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call