Abstract
microRNAs (miRNAs), which contribute to the post-transcriptional processing through 3'-untranslated region-interference, have been shown to be involved in the regulation of ATP-binding cassette (ABC) membrane transporters. The aim of this study was to investigate whether ABCC2, an important efflux transporter for various endogenous and exogenous compounds at several compartment barriers, is subject to miRNA-mediated post-transcriptional gene regulation. We screened the expression of 377 human miRNAs in HepG2 cells after 48 h of treatment with 5 μM rifampicin [a pregnane X receptor (PXR) ligand] or vehicle using reverse transcription-polymerase chain reaction-based low-density arrays. Specific miRNA, ABCC2 mRNA, and protein expression were monitored in HepG2 cells undergoing rifampicin treatment for 72 h. Loss- and gain-of-function experiments and reporter gene assays were performed for further confirmation. Highly deregulated miRNAs compared with in silico data revealed miRNA (miR) 379 as candidate miRNA targeting ABCC2 mRNA. Under rifampicin treatment, ABCC2 mRNA increased significantly, with a maximal fold change of 1.56 ± 0.43 after 24 h. In addition, miR-379 increased (maximally 4.10 ± 1.33-fold after 48 h), whereas ABCC2 protein decreased with a maximal fold change of 0.47 ± 0.08 after 72 h. In contrast, transfection of miR-379 inhibitor led to an elevation of ABCC2 protein expression after rifampicin incubation for 48 h. We identify a miRNA negatively regulating ABCC2 on the post-transcriptional level and provide evidence that this miRNA impedes overexpression of ABCC2 protein after a PXR-mediated external transcriptional stimulus in HepG2 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.