Abstract

The aim of this study was to investigate the relationship between chronic ethanol-induced increase in blood pressure (BP) and alterations in the aortic nitric oxide (NO) and the antioxidant systems in rats. Male Fisher rats (200-250 g) were divided into two groups of six animals each and treated as follows: 1) control (5% sucrose, orally) daily for 12 weeks and 2) 20% ethanol (4 g/kg, orally) daily for 12 weeks. The BP (systolic, diastolic and mean) was recorded every week through tail-cuff method. The animals were sacrificed 12 weeks after treatments and thoracic aorta was collected and analysed. The results show that systolic, diastolic and mean BP was significantly elevated 12 weeks after ethanol ingestion in rats compared to control. The endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) expressions were down-regulated (50-55% of control) leading to depletion of aortic NO levels (69% of control) in ethanol treated rats compared to control. The ratio of reduced to oxidized glutathione (GSH/GSSG) was significantly depleted (58% of control) in the aorta of ethanol-treated rats compared to control. The decrease in aortic GSH/GSSG ratio was good correlated with increase in BP (r = 0.69). The antioxidant enzymes: copper/zinc-superoxide dismutase (CuZn-SOD) and manganese (Mn)-SOD, catalase (CAT) and glutathione peroxidase (GSH-Px) activities were significantly depressed (36-53% of control) in the aorta of ethanol-treated rats compared to control. The study concluded that chronic ethanol ingestion induces hypertension which relates to the vascular endothelial dysfunction on account of the down-regulation of aortic endothelial antioxidants and NO generating system in rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call