Abstract

Although the amygdala and insula are regarded as critical neural substrates perpetuating cigarette smoking, little is known about their circuit-level interactions with interconnected regions during nicotine withdrawal or following pharmacotherapy administration. To elucidate neurocircuitry associated with early smoking abstinence, we examined the impact of varenicline and nicotine, two modestly efficacious pharmacologic cessation aids, on amygdala- and insula-centered circuits using resting-state functional connectivity (rsFC). In a functional magnetic resonance imaging study employing a two-drug, placebo-controlled design, 24 overnight-abstinent smokers and 20 nonsmokers underwent ∼17 days of varenicline and placebo pill administration and were scanned, on different days under each condition, wearing a transdermal nicotine or placebo patch. We examined the impact of varenicline and nicotine (both alone and in combination) on amygdala- and insula-centered rsFC using seed-based assessments. Beginning with a functionally defined amygdala seed, we observed that rsFC strength in an amygdala-insula circuit was down-regulated by varenicline and nicotine in abstinent smokers. Using this identified insula region as a new seed, both drugs similarly decreased rsFC between the insula and constituents of the canonical default-mode network (posterior cingulate cortex, ventromedial/dorsomedial prefrontal cortex, parahippocampus). Drug-induced rsFC modulations were critically linked with nicotine withdrawal, as similar effects were not detected in nonsmokers. These results suggest that nicotine withdrawal is associated with elevated amygdala-insula and insula-default-mode network interactions. As these potentiated interactions were down-regulated by two pharmacotherapies, this effect may be a characteristic shared by pharmacologic agents promoting smoking cessation. Decreased rsFC in these circuits may contribute to amelioration of subjective withdrawal symptoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.