Abstract

Non-small-cell lung cancer (NSCLC) is currently the leading cause of mortality cancer. Introducing noninvasive approaches to diagnose NSCLC, especially at an early phase, might improve the disease's prognosis. Long noncoding RNAs (lncRNAs), which are important regulators of the expression genes inside the cells, have been linked to a range of biological processes, such as cancer progression and metastasis, including NSCLC. The present work aims to determine the potential involvement of SIK-1-LNC and SIK-1 in NSCLC pathogenesis and the possible use of these molecules as novel biomarkers or therapeutic targets. In this work, the expression levels of SIK-1-LNC and SIK-1 in 50 pairs of NSCLC tumor and tumor marginal tissues were evaluated. So, after total RNA extraction and complementary DNA synthesis, the SIK-1-LNC and SIK-1 expression levels were evaluated by real-time PCR. In the study groups, clinical and pathological characteristics of the NSCLC patients were also examined. Our findings showed that tumor samples had much lower levels of SIK-1 and SIK-1-LNC expression than tumor margin samples. SIK-1-LNC expression was correlated with SIK-1 levels in NSCLC samples. Interestingly, both stage and lymph node metastasis features of the tumor were associated significantly with SIK-1 and SIK-1-LNC expression levels. A ROC curve analysis indicated a biomarker index of 0.69 and 0.74 for SIK-1 and SIK-1-LNC, respectively. Collectively, our study emphasized the role of SIK-1-LNC and SIK-1 downregulation in NSCLC oncogenesis. Additionally, SIK-1 and SIK-1-LNC, particularly the latter, have shown remarkable potential to be utilized as new NSCLC biomarkers and therapeutic targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call