Abstract

A multifunction processor for a broadband signal based on the active mode-locking optoelectronic oscillator (OEO) is proposed and experimentally demonstrated. The central frequency down-conversion and frequency spectrum convolution of the target broadband signal (TBS) are realized by just tuning the wavelength of the optical carrier or by the time domain product, respectively. To achieve the central frequency down-conversion of the TBS, an optical tunable delay line (OTDL) is adopted to match the delay time of the OEO loop with the repetition period of the TBS. Then the spectrum convolution of the TBS is produced by just injecting a lower frequency signal consistent with the free spectral range (FSR) of the OEO loop. Moreover, the frequency convolution repetition is also greatly increased by harmonic mode-locking injection. The equivalent bandwidth of the TBS is enlarged by ∼50 times, benefiting from the frequency convolution. The central frequency conversion flexibility and the bandwidth compatibility are also discussed in detail. This work provides a multifunction processor system and may have potential usage in multifunctional integrated radar systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.