Abstract

Recently, hydrogel adhesive patches have been explored for treating myocardial infarction. However, achieving secure adhesion onto the wet beating heart and local regulation of pathological microenvironment remains challenging. Herein, a dough-kneading-inspired design of hydrogel adhesive cardiac patch is reported, aiming to improve the strength of prevalent powder-formed patch and retain wet adhesion. In mimicking the polysaccharide and protein components of natural flour, methacrylated polyglutamic acid (PGAMA) is electrostatically interacted with hydroxypropyl chitosan (HPCS) to form PGAMA/HPCS coacervate hydrogel. The PGAMA/HPCS hydrogel is freeze-dried and ground into powders, which are further rehydrated with two aqueous solutions of functional drug, 3-acrylamido phenylboronic acid (APBA)/rutin (Rt) complexes for protecting the myocardium from advanced glycation end product (AGEs) injury by reactive oxygen species (ROS) -responsive Rt release, and hypoxanthine-loaded methacrylated hyaluronic acid (HAMA) nanogels for enhancing macrophage targeting ability to regulate glycometabolism for combating inflammation. The rehydrated powders bearing APBA/Rt complexes and HAMA-hypoxanthine nanogels are repeatedly kneaded into a dough-like gel, which is further subjected to thermal-initiated crosslinking to form a stabilized and sticky patch. This biofunctional patch is applied onto the rats' infarcted myocardium, and the outcomes at 28 days post-surgery indicate efficient restoration of cardiac functions and attenuation of cardiac fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call