Abstract

One of the most important technological problems associated with alkali-activated materials is high shrinkage. In this study, shrinkage reducing admixtures (SRAs) based on amino alcohols were used in alkali-activated slag (AAS) as strong surfactants that should, in terms of capillary pressure theory, decrease shrinkage via the decrease in surface tension. Although the surface tension of the pore solution was reduced by SRAs, autogenous shrinkage was not affected in the long run, while drying shrinkage was noticeably reduced and simultaneous weight changes were dramatically increased. The expected retardation effect of SRAs on hydration was confirmed using isothermal calorimetry, strength development, mercury intrusion porosimetry and scanning electron microscopy. The obtained results suggest that the observed effect of SRAs on drying shrinkage was caused by coarser pore structure rather than by a decrease in surface tension of the pore solution. Since the decrease in surface tension does not necessarily lead to decrease in shrinkage, the application of capillary pressure theory in AAS can sometimes be an issue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call