Abstract
Within the Dirac- and Lorentz-bubble potential models an electronic structure of the doubly-charged negative ion \(C_{60}^{2-}\) has been studied by a variational method. It is shown that even in the first approximation of this method when a trial wave function of the two electrons is represented as a product of one-electron functions the total energy of the system is negative, a manifestation of the existence of a stable state of the doubly-charged negative ion in these models. The second electron affinity of C60 according to estimation is about \(\epsilon\)2 \(\approx\) 1 eV. The photodetachment cross sections \(\sigma\)(\(\omega\)) of this ion have been calculated as well. Near threshold \(\sigma\)(\(\omega\)) is found to exhibit peculiar and interesting behavior. The first cross section accompanied by the transformation of the doubly-charged negative ion into a singly-charged one is exponentially small near the process threshold. The second cross section corresponds to the photodetachment of a singly-charged ion; it increases at the threshold as a power function of the kinetic energy of the photoelectron. These cross sections are of the same order as the photodetachment cross sections of atomic ions with the same electron affinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.