Abstract

Abstract. The combinatorial surfaces with doubly transitive automorphism groups are classified. This is established by classifying the automorphism groups of combinatorial surfaces which act doubly transitively on the vertices of the surface. The doubly transitive automorphism groups of combinatorial surfaces are the symmetric group S 4 , the alternating group A 5 and the Frobenius group C 7 · C 6 . In each case the combinatorial surface is uniquely determined. The symmetric group S 4 acts doubly transitively on the tetrahedron surface, the alternating group A 5 on the triangulation of the projective plane with six vertices and the Frobenius group C 7 · C 6 on the Moebius torus with seven vertices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.