Abstract
Over a doubly selective channel, broadband transmission systems face challenges in channel estimation and equalization. High mobility causes inter-carrier interference (ICI), while multipath transmission induces inter-symbol interference (ISI). In this paper, we present a mitigation method of ICI/ISI for the offset quadrature amplitude-modulated filter bank multi-carrier (OQAM-FBMC) system. It features low inherent imaginary interference (IMI) sensitivity and high efficiency. Specifically, a pilot indices optimization algorithm and a sparse adaptive orthogonal subspace pursuit (SAOSP) algorithm are presented based on the 2-D channel modeling scheme. The guard pilots are first added to mitigate the effect of ICI. Then the index optimization and SAOSP algorithms are applied to achieve a high-accuracy estimation of sparse channel coefficients. In addition, a threshold judgment suboptimal minimum mean square error (MMSE) equalization method is presented based on the variability of the interference power. The method uses normalized interference power thresholds to estimate the ISI dimension and reduce the equalization data, thus mitigating the effect of ISI and achieving efficient equalization. To verify the above methods, single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) models are built. Simulation results indicate a 3-5 dB improvement in channel estimation accuracy. The suboptimal MMSE equalization results are close to the optimal MMSE with about four orders of magnitude reduction in complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.