Abstract
Missing data are common in medical and social science studies and often pose a serious challenge in data analysis. Multiple imputation methods are popular and natural tools for handling missing data, replacing each missing value with a set of plausible values that represent the uncertainty about the underlying values. We consider a case of missing at random (MAR) and investigate the estimation of the marginal mean of an outcome variable in the presence of missing values when a set of fully observed covariates is available. We propose a new nonparametric multiple imputation (MI) approach that uses two working models to achieve dimension reduction and define the imputing sets for the missing observations. Compared with existing nonparametric imputation procedures, our approach can better handle covariates of high dimension, and is doubly robust in the sense that the resulting estimator remains consistent if either of the working models is correctly specified. Compared with existing doubly robust methods, our nonparametric MI approach is more robust to the misspecification of both working models; it also avoids the use of inverse-weighting and hence is less sensitive to missing probabilities that are close to 1. We propose a sensitivity analysis for evaluating the validity of the working models, allowing investigators to choose the optimal weights so that the resulting estimator relies either completely or more heavily on the working model that is likely to be correctly specified and achieves improved efficiency. We investigate the asymptotic properties of the proposed estimator, and perform simulation studies to show that the proposed method compares favorably with some existing methods in finite samples. The proposed method is further illustrated using data from a colorectal adenoma study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.